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Abstract

In the last 10 years, there have been a number of studies in modeling of the deposition processes in flowlines. Most of these models: (1)
assume empirical or semi-empirical correlations to predict the pressure drop and temperature profile, (2) ignore the radial convection
flow in the layer composed of the two-phase wax and oil (that is the gel layer), and (3) use Fick’s law to describe the diffusion flux of
species towards the wall by using the chain rule to relate concentration gradient to temperature gradient. In this work, a rigorous math-
ematical model for the prediction of wax deposition in pipelines is presented for laminar flow. The transient deposition of each compo-
nent is calculated from the solution of the coupled momentum, energy and, species balance equations, and a thermodynamic wax
precipitation model at the local level. An enthalpy formulation based on a fixed-grid approach is used to approximate the convection
flow in the gel layer. We do not use the chain rule to relate composition gradient to temperature gradient in Fick’s law to avoid violating
the laws of irreversible thermodynamics. Our diffusion flux expression includes molecular diffusion (concentration gradient is driving
force) and thermal diffusion (temperature gradient is driving force) with appropriate diffusion coefficients. This work also includes
the description of the numerical solution of the governing equations. Numerical results and features of wax deposition as well as model
verification with experimental data are presented in a separate paper.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Solid deposition from liquids in both natural and indus-
trial processes can be undesirable and may result in harm.
Examples of solid precipitation include frost formation on
cold surfaces, crystallization fouling in heat exchangers,
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and wax and scale formation in flowlines in petroleum
production.

As the search for oil and gas moves towards deeper
waters such as the Gulf of Mexico and in the North Sea,
the deposition of wax crystals in oil and gas pipelines
becomes a major concern. The deposition in production
tubings and pipelines is undesirable because of decrease
in the flow rate and other operational complexities. To pre-
vent blockage of pipelines, wax deposits should be removed
periodically. Different mechanical, thermal, and chemical
techniques can be used for wax removal [1–5].

Petroleum fluids are composed of a diverse group of spe-
cies. The paraffinic groups with carbon numbers of say 15
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Nomenclature

Greek symbols

dik = dki interaction parameter between component i
and k

e porosity
l viscosity, Pa s
q density, kg/m3

s viscous stress
ki molar latent heat of solidification of component

Alphabet symbols
A momentum equation source term coefficient
a PR-EOS parameter ¼

Pn
i¼1

Pn
k¼1xixkaik

aik PR-EOS parameter ¼ ð1� dikÞa1=2
i a1=2

k
ai PR-EOS parameter ¼ 0:45724R2T 2

ci=P ci

b PR-EOS parameter ¼
Pn

i¼1xibi

bi PR-EOS parameter ¼ 0:07780RT ci=P ci

c total molar density, mol/m3

cj molar density of phase j, mol/m3

cji molar density of component i in phase j, mol/m3

Cpji heat capacity per unit mole of component i in
phasej, J/mol K

Cpj heat capacity of per unit mole of phase j, J/mol K
DCpi difference in heat capacity of component i in

liquid and solid state, J/mol K
DM

j;i;k molecular diffusion coefficient in phase j, m2/s

DM molecular diffusion coefficient matrix
DM

j molecular diffusion coefficient matrix of phase j

DT
ji thermal diffusion coefficient in phase j, m2/K s

DT thermal diffusion coefficient vector
DT

j thermal diffusion coefficient vector of phase j

e multicomponent energy flux, J/m2 s
F feed mole number, mol
fi fugacity of component i, Pa
Hj molar enthalpy of component i in phase j, J/mol
H* ideal gas molar enthalpy of mixture at zero pres-

sure, J/mol
H�i ideal gas molar enthalpy of component I at zero

pressure, J/mol

Dhf
i molar enthalpy of fusion of component I,

J/mol
(Jj,i)r radial diffusion of component i, mol/m2 s
Jj,i diffusion flux of component i in phase j, mol/

m2 s
Jj diffusion flux vector in phase j

J total diffusion flux vector
K permeability, m2

k thermal conductivity, W/m K
L pipe length, m
n total number of components
ns number of solid phases
p pressure, Pa
Pci critical pressure of component i, Pa
P f

i melting point pressure of component i, Pa
p0 outlet pressure, Pa
Q inlet volumetric flow rate, m3/h
q energy flux relative to the mass–average veloc-

ity, W/m2

q(x) Dufour effect, W/m2

R radial distance from pipe center, m
R gas constant, J/mol K
R0 pipe radius, m
Re Reynolds number
S source term
Sj saturation of phase j
T time, s
T temperature, K
Ta ambient temperature, K
Tci critical temperature of component i, K
Tin inlet temperature, K
v velocity, m/s
vji velocity of component i in phase j, m/s
vr radial velocity, m/s
vz axial velocity, m/s
xji molar composition of component i in phase j

Z compressibility factor
zi overall composition of component i
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to some 60 have high crystallization temperatures and may
crystallize even at low concentration in the petroleum fluid
mixture. The crystallites from petroleum fluids are often
referred to as waxes; the temperature at which crystalliza-
tion occurs is referred to as wax-appearance temperature
(WAT).

An understanding of the mechanisms of the wax deposi-
tion and modeling of the process is likely to be a key step
towards an optimum design and prevention of the
problem.

There has been an extensive effort in the last decade to
develop theoretical models for wax deposition calculations.
In recent years, there has been success in the prediction of
wax precipitation from crude oils and gas condensate fluids
for local equilibrium calculations [6]. However, despite
much progress, the more complicated problem of wax
deposition in non-isothermal flowlines is still in an early
stage of development.

There are two main processes that affect the deposition
of wax in flowlines: (1) heat transfer, and (2) species flow.
The heat transfer is mainly from conduction and convec-
tion. The flux of species by convection and diffusion is
expected to strongly influence the deposition. To the best
of our knowledge, the radial convective velocity in the
region containing the deposition for the laminar flow has
been neglected in the past [7–16]. The radial velocity is
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Fig. 1. Computational domain, the geometry of problem is a 2D circular
coordinate system.
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expected to be small in comparison to axial velocity, but its
contribution to species flux in the radial direction may be
comparable to radial diffusion flux (due to non-uniform
wax deposition, radial convection develops). One objective
of this work is to include the radial convective flux in the
formulation.

Wax deposition is a moving boundary problem and the
numerical solution of the balance equations can be a chal-
lenge. A large number of numerical techniques are avail-
able for the solution of a moving boundary problem.
There are two main approaches. In the transformed-grid
approach, the governing differential equations and their
boundary conditions are cast into a generalized curvilinear
coordinate system. The equations can then be solved on a
uniform-rectangular grid, which remains fixed in space
and time. In essence, the moving boundary is immobilized.
Extra terms in balance equations may be required for
conservation of mass, momentum, and energy [17]. In the
fixed-grid approach, which is also known as the
enthalpy–porosity approach [18], a fixed grid is applied
directly in real space (that is, the problem domain) and
the interface conditions are accounted for by the definition
of suitable source terms in the governing equations [18–20].

The enthalpy–porosity approach has been successfully
implemented in many engineering problems that involve
a liquid to solid phase change such as freezing of a pure
liquid in a thermal cavity and melting of a pure metal
[18,21,22]. In this work, we adopt this approach for the first
time in the formulation of wax deposition by treating the
layer with deposition as a pseudo-porous medium. Various
authors have shown that the crystallization of paraffins in
oil leads to the formation of gel with a complex morphol-
ogy. The gelation is due to flocuulation of orthorhombic
wax crystallites that appear in the solution. Observation
with cross-polarized microscopy has revealed that the
crystallites have structures of platelets that overlap and
interlock and a network structure of wax crystals are
formed [15,23,24]. Therefore, the gel behaves as porous
media. In this work the Darcy-type source term is added
to the momentum equation to describe the deceleration
of flow in the gel layer. The energy equation for the multi-
component, two-phase flow is written in terms of the
enthalpy. The relationship between the enthalpy and the
temperature can be described by an equation of state.

To the best of our knowledge, in all the models in the
literature the driving force for radial diffusion is first
written in terms of concentration gradient and then
through the chain rule, the temperature gradient is intro-
duced [7–11,13–16,25,26]. In other words, various authors
use the molecular diffusion coefficients with the driving
force represented by temperature gradient. Thermodynam-
ics of irreversible processes offers a different representation
of diffusion with temperature gradient. In our formulation,
we represent the molecular diffusion (driving force is
concentration gradient), and thermal diffusion (driving
force is temperature gradient) from thermodynamics of
irreversible processes. Proper representation of diffusion
fluxes and the study of diffusion effects are major goals of
this work.

This paper is organized as follows. First, a detailed
description of the mathematical model is presented for
the coupled momentum, energy, and mass balances. We
then provide the thermodynamics of wax-precipitation
model followed by presenting the numerical formulation
of the governing equations and the algorithm. The work
is ended with a general summary and concluding remarks
emphasizing that concentration gradient and temperature
gradient may not be related through a chain rule.
2. Domain definition and basic assumptions

We consider a horizontal pipe of length L and inner
radius R0 (Fig. 1). A multicomponent fluid is injected at
one end with a volumetric flow rate Q at temperature,
Tin. The pipe wall temperature is set at constant tempera-
ture, Ta where Ta < Tin. The outlet pressure is held
constant at p0. We assume single-phase and gel subdomains
as shown in Fig. 1. The formation of solid wax crystals
creates a gel layer, which consists of a liquid phase and a
nonmoving solid phase [15]. Studies of distillate fuels
and model petroleum fluids reveal that as little as 2%
of the crystal precipitate is required to gel the fluid
[15,23,24,27]. When the amount of crystallites increases,
the gel hardens. The process is called aging of the gel layer.
The following assumptions are made in our work:

(1) Shear dispersion and Brownian diffusion are
neglected.

(2) Gravity is neglected.
(3) Diffusions (both thermal and molecular) are

neglected in the axial direction.
(4) Diffusion is neglected in the solid phase.
(5) Solid heat capacity and fluid thermal conductivity of

each component are assumed temperature indepen-
dent.

(6) Laminar flow is assumed.
(7) Multisolid wax precipitation is assumed.



Fig. 2. Wax deposition in a subsea pipeline, a schematic view on how
severely wax deposits can obstruct the pipeline.
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By neglecting the gravity effect, the 3D computational
problem is reduced to 2D (see Fig. 1). There is ample evi-
dence, based on the examination of the deposition in pipe-
lines, that this is a good assumption. Fig. 2 shows one
example of wax deposition in subsea pipeline where the
whole line had to be abandoned due to a hardened nature
of wax deposits.

3. Mathematical model

Below the wax appearance temperature (WAT), part of
heavy components may precipitate and form a gel layer
next to the pipe wall. The gel layer consists of liquid and
immobile solid wax. The hardening of the gel layer is
mainly by convection and diffusion and the subsequent
increase in the fraction of deposited wax. The temperature,
pressure, velocity field, and composition are related
through:

(1) Momentum balance.
(2) Energy balance.
(3) Species balance.
(4) Local solid/liquid equilibrium.
3.1. Momentum balance

In cylindrical coordinates, the momentum equation is
given in the z- and r-directions for a compressible single-
phase liquid flow by the following expressions [28,29]:

oðqvzÞ
ot
þ 1

r
oðrqvrvzÞ

or
þ oðqvzvzÞ

oz

� �
¼ � op

oz
þ 1

r
o

or
ðrsrzÞ þ

oszz

oz

� �
; ð1Þ

oðqvrÞ
ot
þ 1

r
oðrqvrvrÞ

or
þ oðqvzvrÞ

oz

� �
¼ � op

or
þ 1

r
o

or
ðrsrrÞ �

shh

r
þ oszr

oz

� �
: ð2Þ
We use vz and vr to denote the velocity components in the
liquid phase in the z- and r-directions, respectively. In the
two equations above, the stress terms are given by

szz ¼ 2l
ovz

oz
� 1

3
r:v

� �
; srr ¼ 2l

ovr

or
� 1

3
r � v

� �
;

shh ¼ 2l
vr

r
� 1

3
r � v

� �
; srz ¼ szr ¼ l

ovz

or
þ ovr

oz

� �
:

The divergence of velocity vector v in 2D-cylindrical coor-
dinates is given by

r � v ¼ ovz

oz
þ 1

r
o

or
ðrvrÞ: ð3Þ

The system of Eqs. (1) and (2) is subject to the following
boundary conditions:

vzðr ¼ R0; z; tÞ ¼ 0; vzðr; z ¼ 0; tÞ ¼ v0;

vrðr ¼ 0; z; tÞ ¼ 0; vrðr ¼ R0; z; tÞ ¼ 0;

pðr; z ¼ L; tÞ ¼ p0;

ovz

or

����
r¼0;z;t

¼ 0:

ð4Þ

In the above equations, v0 is the fluid axial-velocity at the
inlet and p0 is the pressure at the outlet. As mentioned be-
fore, the formation of the solid wax produces interlocked
platelets with liquid in the solid pore space resulting in
gel formation. Due to crystallization, a moving solid–liquid
boundary forms. The major challenge is how to account for
the deceleration of the fluid flow in the gel region with a
fixed grid. Voller et al. [17,18,21] have introduced an en-
thalpy–porosity approach to simulate freezing of liquids
in a thermal cavity. The enthalpy–porosity approach treats
the phase change as a pseudo-porous medium with poros-
ity, e, decreasing from 1 to 0 as the solid fraction increases
from 0 to 1. A Darcy-type source term is added to the
momentum equations in order to describe the velocity
deceleration in the mushy region.

In this work, we adopt the enthalpy–porosity approach
to model the bulk flow in the gel layer and add the follow-
ing source terms:

Sz ¼ �Avz; ð5Þ
Sr ¼ �Avr ð6Þ

to the right-hand side of Eqs. (1) and (2), respectively. In
the liquid region, the source terms are set to zero. In the
gel layer (where liquid is trapped in the wax platelets),
the parameter A is large enough such that the source terms
dominate the transient, convective, and diffusive terms and
thus the momentum equation approximates Darcy’s law.
As the solid saturation increases to one, the source terms
dominate all the other terms in the momentum equation,
and forces the liquid velocities close to zero. The source
term is thus a function of the porosity of the gel medium
(i.e., the wax saturation). One way to define a suitable form
for A is to use the Carman–Koseny equation [21]. The Car-
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man–Koseny equation relates the effective permeability K

to the porosity e through the equation [30]:

K ¼ 1

C
e3

ð1� eÞ2
; ð7Þ

where C is the morphology coefficient. Darcy’s law can
then be approximated by

rp ¼ � l
K

v � �Cl
ð1� eÞ2

e3
v: ð8Þ

From Eq. (8) we obtain

A ¼ �Cl
ð1� eÞ2

e3 þ q
: ð9Þ

The value of C depends on the morphology of the porous
media. As an example for a packed bed of spheres C = 150/
Dp2, where Dp is the sphere diameter; with this expression
and Eq. (7) one can estimates an accurate value for perme-
ability [31]. For metal formation with grains of Dp = 1 mm
a value of C = 103 m�2 is obtained; this value was used for
the Gallium solidification study [21]. For wax morphology
we find C = 106 m�2 for describing flow in the gel layer as
we will comment in Hoteit et al. [32].
3.2. Energy balance

The general form of the energy equation for a single
phase, multicomponent mixture can be written as [28]:

o

ot

Xn

i¼1

ciHi

 !
¼ �r � eþ DP

Dt
þ T : rv; ð10Þ

where Hi is the partial molar enthalpy of component i, and
DP/Dt is the energetic contribution of the pressure due to
expansion or compression. The term T is the stress tensor
and T:$v is the energetic contribution of viscous dissipa-
tion. The term e is the multicomponent energy flux relative
to fixed coordinates; it is defined as [28]:

e � v
Xn

i¼1

ciH i þ q: ð11Þ

The term v
Pn

i¼1ciHi is the energy flux due to convection.
The term q is given by [28]:

q ¼ �krT þ
Xn

i¼1

J iH i þ qðxÞ; ð12Þ

where �k$T is the energy flux due to conduction and the
term

Pn
i¼1J iH i represents energy transfer due to diffusion

of species. The term q(x) represents the Dufour or diffu-

sion-thermo effect, which is usually negligible. Neglecting
the energetic contributions of the pressure DP/Dt, viscous
dissipation T:$v, and the inter-diffusion of enthalpyPn

i¼1J iH i, the energy equation for the single-phase liquid
flow can be written as
o

ot

Xn

i¼1

ciH i

 !
þr �

Xn

i¼1

ciHiv ¼ r � ðkrT Þ: ð13Þ

The energy equation in the gel layer is written in terms of
the enthalpies of liquid and solid phases:

o

ot

X
j¼o;s

SjcjHj

 !
þr:

X
j¼o;s

SjcjH jvj

 !
¼ r � ðkeffrT Þ; ð14Þ

where the index j = o, s refers to the oil phase and wax
phase (solid phase), respectively; Hj and Sj are, respec-
tively, the molar enthalpy and volume fraction (saturation)
of phase j, and k and keff are the liquid thermal conductivity
in the single phase liquid region and the effective thermal
conductivity in the gel layer, respectively.

The energy equation is subject to the following bound-
ary conditions:

T ðR0; z; tÞ ¼ T a; T ðr; 0; tÞ ¼ T in;

oT
or

����
r¼0;z;t

¼ 0;
oT
oz

����
r;z¼L;t

¼ 0:
ð15Þ

The last expression in Eq. (15), which ignores the axial
thermal conduction at the outlet, is based on a pseudo-stea-
dy state assumption. The effective thermal conductivity keff

in Eq. (14) can be calculated from the Maxwell correlation
[33]:

keff ¼
½2ko þ ks � 2Ssðko � ksÞ�
½2ko þ ks þ Ssðko � ksÞ�

ko: ð16Þ

One may use other models in the calculation of the effective
thermal conductivity of a two-phase mixture [34]. The mo-
lar enthalpy of the oil phase can be calculated from the PR-
EOS [35]:

HoðT ; p; xoÞ ¼ H �ðT ; 0; xoÞ þ RT ðZ � 1Þ

þ T

2
ffiffiffi
2
p

b

daðT Þ
dT

� aðT Þ
2
ffiffiffi
2
p

b

� �
ln

Z þ 2:414B
Z � 2:414B

;

ð17Þ

where Z = pvo/RT is the compressibility factor of the oil
phase and H*(T, 0,xo) is the ideal gas enthalpy of liquid
mixture at zero pressure, which can be calculated from:

H �ðT ; 0; xoÞ ¼
Xn

i¼1

xo;iH �i ðT ; 0Þ: ð18Þ

In Eq. (18), H �i ðT ; 0Þ is the ideal gas enthalpy of component
i. Passut and Danner [36] provide correlations for ideal gas
enthalpy of some 90 substances.

We use the following expression to calculate the
enthalpy of the solid wax:

H sðT ; p; xsÞ ¼
Xn

i¼1

xs;iH s;iðT ; pÞ: ð19Þ

Assuming that pressure has negligible effect on the molar
enthalpy of the solid, and neglecting the effect of tempera-
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ture variation on heat capacity of component i in the solid
state, we can write [35]:

Hs;iðT ; pÞ � Hs;iðT ; pf
i Þ � Hs;iðT f

i ; p
f
i Þ þ Cps;iðT � T f

i Þ: ð20Þ

From the definition of molar latent heat of component i

(heat of fusion):

ki ¼ H o;iðT f
i ; p

f
i Þ � H s;iðT f

i ; p
f
i Þ: ð21Þ

Eqs. (19)–(21) are combined to obtain

H sðT ; P ; xsÞ ¼
Xn

i¼1

xs;i½H o;iðT f
i ; p

f
i Þ � ki þ Cps;iðT � T f

i Þ�:

ð22Þ

In this work, the terms ki;Ho;iðT f
i ; p

f
i Þ; and Cps,i are as-

sumed constant; ki can be evaluated as the average value
at T and T f

i .

3.3. Species balance

The gel layer has structure of platelets that overlap and
interlock and may contain up to 98% liquid in early time of
deposition [23,24,37]. The gel layer may grow with time.
Let us consider flow in two-phase in the domain and write
the mass balance of species i:

o

ot

X
j¼o;s

ðSjcj;iÞ þ r:
X
j¼o;s

ðSjcj;ivj;iÞ ¼ 0; i ¼ 1; . . . ; n; ð23Þ

where cj,i and vj,i are the molar density of component i in
phase j, and the velocity vector for component i in phase
j, respectively. The relation between the bulk velocity, vj

of phase j, molar diffusive flux, Jj,i, and velocity of compo-
nent i in phase j, vj,i is given by

Sjcj;ivj;i ¼ Sjcj;ivj þ SjJ j;i; i ¼ 1; . . . ; n: ð24Þ

Substitution of Eq. (24) into Eq. (23) yields

o

ot

X
j¼o;s

ðSjcjxj;iÞþr �
X
j¼o;w

ðSjcjxj;ivjþ SjJ j;iÞ ¼ 0; i¼ 1; . . . ;n;

ð25Þ

where cj and xj,i are the molar density of phase j and mole
fraction of component i in phase j. The molar density of
phase j and molar density of component i in phase j are re-
lated by

cj;i ¼ xj;icj: ð26Þ

Note that in each phaseXn

i¼1

ðJ j;iÞ ¼ 0; j ¼ o; s: ð27Þ

By summing Eq. (25) for i = 1, . . . ,n and usingPn
i¼1xj;i ¼ 1; j ¼ o; s, and Eq. (27), the total molar balance

expression is given by

o

ot

X
j¼o;s

ðSjcjÞ þ r �
X
j¼o;s

ðSjcjvjÞ ¼ 0: ð28Þ
The total molar density c is defined by

c ¼
X
j¼o;s

Sjcj: ð29Þ

The overall composition of component i is related to the
phase composition of component i by

czi ¼
X
j¼o;s

Sjcjxj;i; i ¼ 1; . . . ; n: ð30Þ

Using Eq. (30) one can write Eq. (28) as

o

ot
ðcziÞ þ r �

X
j¼o;s

ðSjcjxj;ivj þ SjJ j;iÞ ¼ 0; i ¼ 1; . . . ; n:

ð31Þ

The total molar balance from Eq. (31) can be written as

oc
ot
þr �

X
j¼o;s

ðSjcjxj;ivjÞ ¼ 0; i ¼ 1; . . . ; n: ð32Þ

Eqs. (31) and (32) are subject to the following boundary
conditions:

zi ¼ ðziÞin at z ¼ 0;

ðJ j;iÞr ¼ 0 at r ¼ 0;R0;

ozi

or
¼ 0 at r ¼ 0:

ð33Þ
3.3.1. Diffusion flux
The molar diffusion flux in a vector form can be written

as [38]:

J ¼ �cðDMrxþDTrT þDPrpÞ: ð34Þ

where J, DM, DT and DP are the total diffusion flux vector,
molecular diffusion coefficient matrix, thermal diffusion
coefficient vector, and pressure diffusion coefficient vector,
respectively. On the right side, the first, second, and third
terms represent molecular diffusion, thermal diffusion,
and pressure diffusion, respectively. Neglecting the pressure
diffusion, the diffusion flux of component i, i = 1, . . . ,n � 1,
in phase j is given by

J j ¼ �cjðDM
j rxj þDT

jrT Þ: ð35Þ

where Jj = [Jj,i] and $xj = [$xj,i]; DM
j ¼ ½DM

j;i;k�; k ¼ 1; . . . ;

n� 1 and DT
j ¼ ½DT

j;i� are the molecular diffusion coeffi-
cients and the thermal diffusion coefficients in phase j,
respectively. Firoozabadi et al. [38,39] describe the method-
ology for calculating molecular and thermal diffusion
coefficients. Eq. (35) consists of two terms. The first term
on the right side is known as the Fick’s law and the second
term is often referred to as the Soret effect. In a multicom-
ponent mixture such as a petroleum fluid with varying
molecular sizes and molecular shapes, in addition to diag-
onal molecular diffusion coefficients, cross coefficients may
become important [40].

To the best of our knowledge, in all of the existing
models for wax deposition, the diffusion flux in a (pseudo)
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binary mixture in the radial direction is written in the fol-
lowing form:

J o;1 ¼ �cDM
o;1;1

oz1

or
¼ �cDM

o;1;1

oz1

oT
oT
or
: ð36Þ

The concentration gradient in the Fick’s law of diffusion is
subject to constant temperature and pressure and thus the
expression above is not valid. The appropriate form of the
diffusion flux without pressure diffusion is given by Eq.
(35).

3.4. Solid–liquid equilibria

There are two types of models for wax precipitation cal-
culations in petroleum fluids; (1) solid solution, and (2)
multisolid-phase. The multisolid model can describe the
WAT and the amount of precipitation more accurately
than the solid solution model [41,42]. In this work, we per-
form the solid–liquid phase calculations by using the mul-
tisolid-phase model by Lira-Galeana et al. [6], where each
precipitated component forms a solid layer, which does
not mix with the other solid layers. The model uses a
two-step procedure for the phase-split calculation:

(1) Stability analysis.
(2) Phase-split calculation.
3.4.1. Stability analysis
This is a preprocessing step to identify which of the com-

ponents are precipitating and which are not. A component
i precipitates at a given temperature and pressure if the fol-
lowing condition is satisfied [33]:

fiðp; T ; zÞ � f pure
s;i ðp; T ÞP 0; ð37Þ

where fi(p,T,z) and f pure
s;i ðp; T Þ are the fugacity of compo-

nent i with overall composition z, and fugacity of pure so-
lid-component i at pressure p and temperature T,
respectively.

3.4.2. Phase-split calculation

Suppose the stability-analysis provides the condition
that ns components of the n-component mixture (i.e., the
components (n � ns + 1), . . . ,n) precipitate. These compo-
nents, therefore, fulfill Eq. (37).

The governing equations for the wax precipitation are
given by the equilibrium and the material balance equa-
tions. For every precipitating component i, the equilibrium
and material balance equations are, respectively, given by

fo;iðp; T ; xoÞ ¼ f pure
s;i ðp; T Þ; i ¼ ðn� ns þ 1Þ; . . . ; n; ð38Þ

and

zi� xo;i 1�
Xn

k¼n�nsþ1

N s;k

F

" #
�N s;i

F
¼ 0; i¼ ðn� nsþ 1Þ; . . . ;n:

ð39Þ
The material balance equations for the non-precipitating
components are
zi � xo;i 1�
Xn

k¼n�nsþ1

N s;k

F

" #
¼ 0; i ¼ 1; . . . ; ðn� nsÞ; ð40Þ

where fo,i(p,T,xo) is the fugacity of component i in the oil
phase with composition xo,i, Ns,i is the number of moles
of component i in the wax phase, F is the total number
of moles of the wax components.

The fugacities of a pure component i in solid and liquid
states are related by [33]:

f pure
s;i ðp; T Þ ¼ f pure

o;i ðp; T Þ exp �Dli½ �; ð41Þ

where Dli ¼ lpure
o;i � lpure

s;i =RT ¼ Dhf
i=RT f

i � DCpi=RT f
i

� 	
T f

i=T � 1
� 	

� DCpi=RT f
i ln T f

i=T
� 	

:
The symbols are defined in the Nomenclature. The

fugacity of pure component i in the liquid state can be
calculated from the Peng–Robinson equation of state.
4. Numerical model

The momentum, energy, and species mass balance equa-
tions and the local wax solid–liquid model are coupled and
solved with initial and boundary conditions to predict the
pressure, temperature, velocity and composition in the gel
and liquid regions as well as the wax fraction (i.e., volume
fraction or weight fraction). The 2D computational
domain is discretized into a structured grid of rectangular
elements. A finite-volume based method is used for the spa-
tial approximations. Different temporal, spatial and linear-
ization schemes are implemented to solve the governing
equations. The scalar unknowns like the pressure, temper-
ature, enthalpies, densities, mole fractions and saturation
are approximated over the same control volumes while
the velocity is approximated over a different control vol-
ume. The numerical algorithm uses two levels of iterations
at each time step. In the inner level, we solve the coupled
momentum and total mass balance equations to approxi-
mate the pressure and the velocity field. In the outer level,
we solve the energy equation and the species balance equa-
tions to calculate the temperature and the overall composi-
tion. Once the overall composition, temperature, and
pressure are known, we apply the phase-equilibria model
to calculate the oil and wax compositions and the wax sat-
uration in the gel layer.

Here, we provide the basic numerical methods used to
solve our system of equations.
4.1. Solution of the momentum equation

The momentum equation is solved by using the SIM-
PLER method of Patankar [43]. In this method, a ‘‘stag-
gered” or a displaced grid for the velocity components is
used. The velocity components are calculated for the points
that lie on the faces of the control volumes and the pressure
at the main grid points (see Fig. 3). For presentational con-
venience, the general discretization of axial and radial
momentum equations (combined Eqs. (1) and (5), and
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Fig. 3. Computational cells, discretization and staggered model based on
SIMPLER method.
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Eqs. (2) and (6)) at the west- and north-cell faces of a scalar
control volume P are given by:

ðAw
z þ Sw

z Þvw
z ¼

X
nb

anb
z vnb

z þ ðpP � pwÞaw
z þ b w

z ; ð42Þ

and

ðAn
r þ Sn

r Þvn
r ¼

X
nb

anb
r vnb

r þ ðpP � pNÞan
r þ b n

r : ð43Þ

The spatial, temporal and fluid dependant terms are incor-
porated into the coefficients A, a and b in Eqs. (42) and
(43). These coefficients are calculated by using the power

law scheme of Patankar [41]. The subscript nb refers to
the neighboring nodes of the control volume P. The dis-
cretized Eqs. (42) and (43) are similar to the general discret-
ized equations defined by Patankar except in two
additional terms Sw

z and Sn
r [43]. These terms, which appear

on the right-hand side of Eqs. (42) and (43), are a conse-
quence of the added Darcy-type source term to the momen-
tum equations. Note that these terms end up at the
diagonal of the linear system whose solution is the velocity
field. The values of the axial and radial velocities are thus
inversely proportional to Sw

z and Sn
r , respectively.

The discretization of the momentum equations leads to
two equations and three unknowns; p, vz, and vr. To close
the system, Eqs. (42) and (43) are coupled with the total
molar conservation equation. Assuming that the solid
phase does not flow, the total molar conservation equation
becomes

oc
ot
þr � ðSocovoÞ ¼ 0: ð44Þ

A finite-volume method is used to discretize Eq. (44). The
scalar variables So, co and c are approximated over the
same control volumes as the pressure. The spatial and tem-
poral discretization of Eq. (44) can be written in the general
form asX

nb

�anb
z vnb

z þ
X

nb

�bnb
r vnb

r ¼
ðcn � cn�1Þ

Dt
: ð45Þ
A first-order upwind scheme is used to define the coeffi-
cients �anb

z and �bnb
r at the control volume boundaries. These

coefficients with the right-hand term in Eq. (45) are evalu-
ated from the information at previous time steps. The
sought unknowns from Eqs. (42)–(44) are the velocities vz

and vr, and the pressure. A full description of the algorithm
can be found in Refs. [43,44].

4.2. Solution of the energy equation

Assuming that the solid wax phase is immobile, the
energy balance equation, Eq. (14) simplifies to

o

ot

X
j¼o;s

SjcjHj

 !
þr:ðSocoH ovoÞ ¼ r � ðkeffrT Þ: ð46Þ

The finite-volume method is used for the spatial discretiza-
tion of Eq. (46). The convection term, which is the second
term in the left-hand side of Eq. (46) is solved by using a
first-order upwind scheme. The left-hand side of Eq. (46)
representing heat conduction is approximated by a central
finite difference scheme. The time operator is approximated
by a semi-implicit time scheme. The enthalpies Ho and Hs,
and the temperature T are implicit in time. The other vari-
ables are known from the previous time step iteration. The
spatial and temporal discretization of Eq. (46) over a con-
trol volume P can be written in the form (see the
Appendix):

GPðT Þ � ao;P Ho;P þ as;PH s;P �
X

nb

F nbHnb

�
X

nb

DnbT nb � bP ¼ 0: ð47Þ

The coefficients ao,P,aw,P,bP,Fnb and Dnb are calculated
from information at the previous iterations (see the Appen-
dix). The enthalpies in Eq. (47) are functions of tempera-
ture and composition; they are defined in Eqs. (17) and
(19). The linearization of Eq. (47) by the Newton–Raphson
(NR) method yields

ðao;PCpo;P þ as;PCps;PÞDT P

�
X

nb

ðF nbCpnb;P þ DnbÞDT nb;P ¼ �GPðT ‘�1Þ; ð48Þ

where ‘ refers to the iteration counter and Cpo,nb = oHo,nb/
oT, Cps,nb = oHs,nb/oT. The main steps of the algorithm
are:

1. For given velocities, densities, and saturation compute
the coefficients ao,P,as,P,Fnb and Dnb.

2. For given pressure, temperature and composition apply
the PR-EOS and calculate the derivatives oHo/oT and
oHs/oT.

3. Solve the linear system given in Eq. (47) and correct the
temperature from T‘ = T‘�1 + DT.

4. Repeat steps 1–3 until the convergence criterion
kDTk < TOL is satisfied.
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4.3. Solution of the species balance equations

Neglecting the velocity and diffusion in the solid phase
and using Eq. (31), the species balance can be written as

o

ot
ðcziÞ þ r � ðcvoziÞ ¼ �r � ðSoJo;iÞ þ r � ðSscsxs;ivoÞ;

i ¼ 1; . . . ; n: ð49Þ

The finite-volume scheme is also used for the spatial dis-
cretization of the species balance equations. The convec-
tion term in the left-hand side of Eq. (49) is treated
implicitly in time with a first-order upwinding scheme.
The terms on the right-hand side are calculated explicitly.

4.4. Solution of the phase-equilibria model

The stability analysis can be readily performed by using
the PR-EOS and the expression of the fugacity of the wax
phase given in Eq. (41). The phase-split calculation can be
performed efficiently by using the successive-substitution-

iteration (SSI) or the NR methods. Here, we provide the
algorithms for the phase-split calculation by both methods.

The governing system has (n + ns) equations given by
Eqs. (38)–(40) and (n + ns) unknowns, which are the mole
fraction of the oil phase (xo,i; i = 1, . . . ,n) and the number
of mole of the precipitated wax components (Ns,i;
j = (n � ns + 1), . . . ,n).

The main steps of the SSI algorithm are as follows:

1. Guess an initial oil mole fraction xold
o . If no information

is available, take the oil mole fraction to be the same as
the feed mole fraction (i.e., xold

o ¼ z).
2. Calculate the fugacity fo;iðp; T ; xold

o Þ from the PR-EOS.
3. Update the oil mole fraction of the precipitating compo-

nents from (see Eq. (38)):

xo;i ¼
fs;iðp; T Þ

fo;iðp; T ; xold
o Þ

xold
o;i ; i ¼ ðn� ns þ 1Þ; . . . ; n:

4. Define Ns from

N s ¼
Xn

j¼n�nsþ1

N s;j

F
:

Ns can be calculated by summing Eq. (39) for
i = (n � ns + 1), . . . ,n, that is,

N s ¼
Zs � X o

1� X o

;

where X o ¼
Pn

i¼n�nsþ1xo;i and Zs ¼
Pn

i¼n�nsþ1zi.
5. Use Eq. (39) to calculate the number of moles of the pre-

cipitating components

N s;i ¼ zi � xo;i½1� N s�; i ¼ ðn� ns þ 1Þ; . . . ; n:

6. Use Eq. (40) to calculate the oil mole fractions of the
non-precipitating components

xo;i ¼
zi

1� N s

; i ¼ 1; . . . ; ðn� nsÞ:
7. Normalize the oil mole fraction xo,i.
8. Check if the convergence criterion kxo � xold

o k < TOL is
satisfied. If not, set xold

o ¼ xo and repeat steps 2–8.

The computational speed of each SSI iteration is quite
fast but generally it requires more iterations than the NR
method. In the NR algorithm, we define the residual func-
tion gi from (see Eq. (38)),

giðxoÞ � fo;iðp;T ;xoÞ� fs;iðp;T Þ ¼ 0; i¼ ðn� nsþ 1Þ; . . . ;n:
ð50Þ

The composition of the precipitating components is then
computed by solving:

JDxo ¼ �G ; ð51Þ
where

J ¼ ogi

oxo;j

� �
i;j¼ðn�nsþ1Þ;...;n

; Dxo ¼ ½xi�i¼ðn�nsþ1Þ;...;n; and G

¼ �½gi�i¼ðn�nsþ1Þ;...;n:

Note that the size of the linear system is equal to the num-
ber of precipitating components. The mole fractions of the
oil phase for the precipitating components are then up-
dated from

xo;i ¼ xold
o;i þ Dxo;i; i ¼ ðn� ns þ 1Þ; . . . ; n: ð52Þ

The NR algorithm is similar to SSI algorithm described
above and is implemented by replacing the update of the
composition of the precipitating components in Eq. (52)
by step 3 in the SSI algorithm. The other steps are exactly
the same.

In all our calculations, even very close to phase
boundaries, the SSI method performed very well. Unlike
vapor-liquid equilibria calculations, where close to phase
boundaries the SSI algorithm becomes inefficient, there
was no convergence problem with the SSI algorithm in
the entire saturation range in wax precipitation
calculations.
5. General algorithm

The main steps of the algorithm for predicting the wax
deposition in pipelines are the following:

– Initialize the fluid and pipe parameters.
– Iterate over the time step (outer loop).

1. Update the diffusion coefficients and the fluid
viscosity.

2. Iterate until convergence (inner loop).

2.1 Solve the momentum and the total mass balance
equations to approximate the pressure and
velocity field.

2.2 Solve the energy equation to calculate the
temperature.
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2.3 Solve the species balance equations to calculate
the overall composition.

2.4 Set cold = c, where c is the overall density.
2.5 Apply the phase-equilibria model to calculate

phase compositions, saturation, and oil, wax
and overall densities.

2.6 Check the convergence criterion
kcold � ck < TOL. If no convergence, repeat
steps 2.1–2.6.
– Repeat until the assigned time is reached.

The fluid viscosity is a function of temperature, pressure
and composition. It is calculated from the correlation of
Lohrentz et al. [45]. The diffusion coefficients and the vis-
cosity are updated outside the inner loop for their weak
dependency on the temperature and pressure variation dur-
ing the convergence process of the inner loop.

6. Summary and concluding remarks

A mathematical model for wax deposition in pipelines
for a multicomponent fluid is presented. The model couples
the momentum, energy and species balance equations and
a multisolid-wax precipitation model. There are two main
features that characterize our model:

1. We include molecular diffusion and thermal diffusion
in our formulation. Both affect the flux of species
towards the pipe wall by diffusion. The driving force
for molecular diffusion is the concentration gradient.
The driving force for thermal diffusion is temperature
gradient. These two gradients may not be proportional
in the gel layer. The temperature gradient is expected
to be high close to the pipe wall. The concentration
gradient, because of phase change, is expected to be
high close to the interface of the single liquid phase
region and the gel layer. Furthermore the temperature
gradient close to the wall may reach a pseudo steady
state quickly and stay large close to the wall. This
may not be true for the concentration gradients. All
these aspects may lead to incorrect results by the com-
monly accepted use of the chain rule to replace con-
centration gradient by temperature gradient in the
Fick’s law. In Hoteit et al. [32], the numerical results
will demonstrate the importance of the use of the
proper diffusion flux expression and the need for con-
sistency in diffusion flux expression from irreversible
thermodynamics. With consistent formulation the
model is predictive.

2. An enthalpy–porosity approach is used to account for
the flow deceleration in the gel layer where it is mod-
eled as a pseudo-porous medium. A Darcy-type
source term is added to the momentum equations.
This source term is a function of the porosity (oil sat-
uration) in the gel layer. In the single-phase liquid
region, this function is set to zero and the velocity
is calculated from the momentum equation. In the
gel layer, the source term increases gradually with a
Carman–Koseny-type function as the solid saturation
increases. The velocity field is inversely proportional
to source function. The increase in the source term
leads to a decrease in the velocity field. The energy
equation is written in terms of the liquid and solid
enthalpies.

A detailed numerical algorithm to solve the mathemati-
cal model is also provided. The momentum equation cou-
pled with the total mass balance equation is solved by the
SIMPLER method to approximate the pressure and veloc-
ity field. The energy equation is discretized by a finite vol-
ume scheme and linearized by the NR method. The liquid
enthalpy is related to temperature using the PR-EOS. A
robust algorithm for solid–liquid equilibria is presented.
The algorithm uses the SSI method or the NR method.
With the NR method, the size of the linear system is the
number of precipitating components which makes the algo-
rithm very efficient.
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Appendix A

The energy balance equation (Eq. (46)), in cylindrical
coordinates, is written as

o

ot

X
j¼o;s

SjcjHj

 !
þ o

oz
ðJzÞ þ

1

r
o

or
ðJrÞ ¼ 0; ðA:1Þ

where

Jz ¼ SocoH ovo;z � keff

oT
oz

� �
and

Jr ¼ r SocoHovo;r � keff

oT
or

� �
:

Let P be a control volume with edges e, w, n and s, and
neighboring control volumes E, W, N, and S. Fig. A1 illus-
trates the five point grid cluster at P. For the sake of sim-
plicity, we suppose that the domain is uniformly discretized
with space steps Dz and Dr along the z- and r-directions,
respectively (Fig. A1).

Integrating Eq. (A.1) over the control volume P, we get
the semi-discretized equation:

o

ot

X
j¼o;s

SjcjHj

 !
P

DzDr þ Je � Jw þ Jn � Js ¼ 0: ðA:2Þ
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Fig. A1. Grid point cluster at location P. Staggered discretization method
to implement SIMPLER algorithm. Scalar variables are presented at the
center of the control volume. Vector variables are located at the surface of
control volume.

R. Banki et al. / International Journal of Heat and Mass Transfer 51 (2008) 3387–3398 3397
The fluxes Je, Jw, Jn, and Js in Eq. (A.2) are defined by

Je ¼ eF eH o;e�DeðT E� T PÞ; Jw ¼ eF wH o;w�D wðT P � T WÞ;
Jn ¼ eF nHo;n �DnðT N� T PÞ; J s ¼ eF sH o;s�DsðT P� T SÞ;

whereeF nb ¼ ðSocovo;zÞnbDr

Dnb ¼ ðkeffÞnb
Dr
Dz

(
for nb ¼ w; e; and

eF nb ¼ rnb

rP
ðSocovo;zÞnbDz

Dnb ¼ rnb

rP
ðkeffÞnb

Dz
Dr

(
for nb ¼ n; s:

Different schemes, such as upstream, hybrid, and power law

can be used to define the variables at the interfaces between
the blocks [43]. By using the upstream scheme, the semi-
discretized Eq. (A.2) is written in the general form:

o

ot

X
j¼o;s

SjcjHj

 !
P

DzDr ¼
X

nb

F nbHo;nb þ
X

nb

DnbT nb;

ðA:3Þ
The counter nb in the above equation refers to the center
and edge points P, e, w, n and s. The coefficient Fnb and
Dnb are defined as

F e ¼ maxð�eF e; 0Þ; F w ¼ maxðeF w; 0Þ; F n ¼ maxð�eF n; 0Þ;
F s ¼ maxð�eF s; 0Þ; F P ¼ �

X
nb¼n;w;e;s

F nb and

DP ¼ �
X

nb¼n;w;e;s

Dnb:

As presented in the main text, there are two iterative pro-
cedures in the algorithm. In the inner loop, we solve the
nonlinear system by coupling the momentum, energy and
species balance equations. In the outer loop, we iterate
on the time step. Let k and n denote the inner and outer
loops, respectively. By using the backward-Euler scheme
to discretized the time operator in semi-discretized Eq.
(A.3), the spatial and temporal discretized form of Eq.
(A.3) at the current inner-loop step k + 1 and the current
time step n + 1 is written as

anþ1;k
o;P H nþ1;kþ1

o;P þ anþ1;k
s;P Hnþ1;kþ1

s;P � bn
P

¼
X

nb

F nþ1;k
nb H nþ1;kþ1

o;nb þ
X

nb

Dnþ1;k
nb T nþ1;kþ1

nb ; ðA:4Þ

where, aj;P ¼ DzDr=DtðSjcjÞP; j ¼ o; s, and bn
P ¼ DzDr=DtP

j¼o;sSjcjHj


 �n

P
. The unknowns in Eq. (A.4) are the tem-

perature and enthalpy variables. The coefficients F nþ1;k
nb ,

Dnþ1;k
nb , anþ1;k

o;P , anþ1;k
s;P , and bn

P are calculated from previous

iterations. For the sake of clarity, we drop the indicators
k and n and define the function GP in terms of the temper-
ature and enthalpy variables:

GPðT Þ � ao;PHo;P þ as;PH s;P �
X

nb

F nbHnb

�
X

nb

DnbT nb � bP ¼ 0: ðA:5Þ
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